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Flow in an open channel capillary 

By L. A. ROMERO A N D  F. G. YOST 
Sandia National Laboratories, Albuquerque, NM 87 185-5800, USA 

(Received 30 January 1995 and in revised form 19 March 1996) 

The problem of capillary-driven flow in a V-shaped surface groove is addressed. A 
nonlinear diffusion equation for the liquid shape is derived from mass conservation 
and Poiseuille flow conditions. A similarity transformation for this nonlinear equation 
is obtained and the resulting ordinary differential equation is solved numerically for 
appropriate boundary conditions. It is shown that the position of the wetting front is 
proportional to (Dt)1'2 where D is a diffusion coefficient proportional to the ratio of the 
liquid-vapour surface tension to viscosity and the groove depth, and a function of the 
contact angle and the groove angle. For flow into the groove from a sessile drop source 
it is shown that the groove angle must be greater than the contact angle. Certain 
arbitrarily shaped grooves are also addressed. 

1. Introduction 
The kinetics of liquid flow into a capillary has been of considerable interest for many 

years (see e.g. Washburn 1921 and Bell & Cameron 1906) and has received recent 
attention because of its similarity to flow in porous media and on rough surfaces. 
Porous media may be considered an ensemble of contorted capillary tubes while rough 
surfaces may be viewed as contiguous open channel capillaries. Extensive and rapid 
flow of liquids into surface grooves and scratches on solid substrates has often been 
observed. Parker & Smoluchowski (1944) immersed grooved iron plates into molten 
silver and measured the capillary rise into the V-shaped grooves. The grooves were 
0.127 mm deep and had basal angles of 60", 90", and 120". The liquid silver rose quickly 
into the 60" grooves, slowly into the 90" grooves and not at all into the 120" grooves. 
They also observed preferential spreading in grain boundary grooves that intersected 
the surface. On iron surfaces that were etched in 50 % nitric acid, spreading of liquid 
silver was so extensive that it eventually covered the entire surface of the iron. 
Shuttleworth & Bailey (1948) recognized that spreading on a rough surface could be 
likened to liquid rise in a capillary tube. Under wetting conditions, a tongue of liquid 
would extend into a surface groove a certain distance that would increase as the groove 
became deeper and narrower. Spreading across grooves required surmounting an 
energy barrier. Shepard & Bartell (1953) observed extensive spreading of methanol on 
grooved paraffin surfaces. Bascom, Cottington & Singleterry ( 1964) and Cottington, 
Murphy & Singleterry (1964) saw rapid spreading of various organic fluids on polished 
stainless steel surfaces. Rapid flow into surface scratches (due to polishing) and the 
resulting dendritic pattern of fluid was described as 'catastrophic spreading'. Adams 
( 1966) also saw remarkably high spreading rates (several hundred centimetres per 
second) for silver-copper alloys on copper but did not discuss surface roughness. 

Since spreading of liquids is often preceded by flow in surface grooves it is necessary 
to describe the rate of this flow and the shape of the liquid in the groove. To this end, 
flow in V-shaped grooves has been modelled by utilizing a method similar to that 
recently employed by Lenormand & Zarcone (1984). It will be shown that flow distance 
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scales as time to the $ power, as in most capillary flow problems, and that the 
magnitude of the flow rate is determined by groove geometry and the ratio of liquid 
surface tension to viscosity. 

2. The equations for a V-shaped groove 
Consider a V-shaped groove of depth h, in an otherwise smooth, flat surface. A 

cross-section of such a groove sketched in figure 1 (a) .  When a drop of liquid is placed 
on this groove, under certain conditions the liquid flows into the groove due to 
capillary action. It will be assumed that the radius of the liquid drop is much larger 
than the height of the groove. As the fluid flows into the groove there are two possible 
situations along the groove. The first possibility is that the fluid only partially wets the 
sidewalls of the groove cross-section. In this case the height h(z, t )  up to which the fluid 
fills the groove is an independent quantity subject to the restriction h(z, t )  < h,. Here 
z is the axial distance along the groove. In this case the contact angle 8, that the liquid 
makes with the walls of the groove is assumed to be known from the properties of the 
materials involved or directly from measurement. If the axial variation of the height of 
the liquid in the groove varies on a length scale much larger than h,, and the flow is 
slow enough that forces due to surface tension dominate the inertial and viscous forces, 
then a cross-section of the free surface of the liquid must be circular. 

The second possibility is that the liquid completely wets the sidewalls of most of the 
groove cross-section. In this case the height h(z,  t )  must be equal to h,, but the angle 
8(z, t )  that the liquid makes with the walls of the groove is independent of material 
surface energies provided 8(z ,  t )  > 0,. In this case it will be said that the liquid is pinned 
to the walls of the groove. Once again the cross-section of the free surface of the liquid 
is assumed to be circular. This situation is sketched in figure 1 (b) .  

The division of the surface into a pinned and an unpinned region is necessitated by 
our assumption that there is a sharp angle at the top of the groove. If there was a 
smooth transition at the top of the groove, the angle B would always be specified, and 
there would be no pinned region. We elaborate on this point further in $6. In either case 
the pressure at each point in the groove is assumed to be constant and given by 

P ( Z )  = yK(z )  +Po, (1) 
where y is liquid-vapour surface tension, K(z )  is the mean curvature of liquid in the 
groove, and p ,  is the constant pressure above the liquid in the groove. This expression 
for the pressure is valid provided the forces due to surface tension are much greater 
than those due to viscosity (viscous forces are assumed to dominate inertial forces). 
This will be true provided the capillary number 

UP Ca=--g 1, 
Y 

where U is a characteristic velocity of the fluid flowing through the groove and p is 
the dynamic viscosity. If the principal curvature parallel to the groove is neglected the 
mean curvature becomes 

where 8 is viewed as a function of flow distance and time; in equilibrium it is given by 
8 = Oo.  The above formula for the radius of curvature is an exercise in trigonometry 
that can be carried out with the help of figure 1. 
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FIGURE 1. (a) A V-shaped groove containing liquid assumed to have a contact angle equal to 19 along 
the entire groove length. (b )  A filled groove having a circular surface shape and defining the pinned 
state. 

Our analysis assumes we can ignore the axial contribution to the mean curvature. 
We should make it clear when this is and is not justifiable. First of all, from (2) we see 
that this will not be valid if a = 8,. In this case the only contribution to the mean 
curvature comes from the neglected axial term. As we shall see, our analysis assumes 
that a > B,, so our assumptions will break down as a + 8,. 

In general it is assumed that we can neglect the axial contribution to the curvature 
since the groove is assumed to be very long and thin. The spatial gradients in the axial 
direction are small compared to the radius of curvature given by (2). However, there 
are still some regions where this assumption breaks down. At very early times, the drop 
has not spread far down the groove, so the axial gradients are in fact large compared 
to the assumed radius of curvature. Also at the boundary between the pinned and 
unpinned regions, the derivative of the free surface is not continuous. It follows that 
in this region the assumption also breaks down. Furthermore, in the region very near 
the drop this assumption will also fail. It is assumed that since these regions of 
invalidity are confined to very small regions in space and time, that it is reasonable to 
ignore them. 

The volumetric flow rate q(z, t )  is given by 

where n is the unit normal to the cross-section of the groove. Following the method of 
Lenormand & Zarcone (1984)), the volumetric flow rate is related to the cross-sectional 
area, A(z ,  t ) ,  of liquid by the relation 

a@, t )  - c?A(z, t )  
a,- at  . 

- -~ 

The cross-sectional area is 

where 
A(2, t )  = h2(z, t )  2(0 (~ ,  t) ,  a), 

(4) 

( 5  b) 
sin2(a - 0) tan (a) - (a - 0) + sin (a - 0) cos (a - 0) 

tan2 (a)  sin2 (a - S) 
= 

Note that the function a appears to be singular when 8 = a, but it is not. In 9 5  it is 
shown that the volumetric flow rate can be written as 
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where T(0, a)  is a positive function. Equation (6) is similar to the classic equation for 
flow through a circular pipe. In $ 5  it will be shown that r (0 ,  a )  can be calculated by 
solving Poisson's equation on a cross-sectional slice of the fluid in the groove. The 
details of the numerical approximation of r (0 ,  a)  are given in 8 5 and Appendix A. For 
now a very good analytical correlation to the function T(0, a)  will be presented. For the 
special case where 0 = a the value of T(a, a)  can be approximated by the correlation 

(7 a)  

When a is varied from 0 to x/2,  (7a)  predicts T(a, a )  to within 0.1 %. In order to predict 
T(0,a) the height of the fluid at the midline of the groove is first introduced. This is 

1 cot3 (a) + 3.4 cot4 (a)  + cot5 (a)  
T(a, a)  z - 

6 1 +3.4cot(a)+4cot2(a)+3.4cot3(a)+cot4(a)' 

given by 
cos(a--8)- 1 

sin (a  - 0) 

Assuming that 0 < a, the correlation 

is employed. This approximate expression for r (0 ,a)  was found to be within 2.5% 
agreement with the exact numerical calculations provided 0 < a. 

In order for (6) to be valid it is necessary that the pressure gradient along the axis 
of the groove changes on a length scale that is large compared to h(z, t). Note that from 
(1) and (2) the pressure gradient is on the order of y /[h(z ,  t )  L] where L is the 
characteristic length in the axial direction. From (6) it follows that the average velocity 
in the groove is on the order of yh,/(uL), and hence Ca M h,/L. This shows that the 
viscous stress does not have much influence on the shape of the free surface provided 
that the height of the groove is much smaller than its length. 

In those parts of the groove where the liquid only partially fills the grove (l), (2), (4), 
( 5 )  and (6) combine to yield 

-- ah2(-, t )  - --{hz(z, D c? ?)-}, ah(,-, t )  
at h, az a2 

and 

Note that this is a nonlinear diffusion equation for h2(z,t). This is an ill-posed 
problem if the diffusion coefficient is negative but well posed if D > 0 which requires 
that a--8 > 0. Because a is the angle of a physical surface it can never be greater 
than f ~ .  Although certain combinations of liquids and solid surfaces can exhibit 
0 > fx (non-wetting conditions) liquids in these systems will not flow into surface 
grooves. If 0 < flow will commence if a is large enough. Note that when a-8, 
is positive the free surface of the fluid is concave, and when it is negative the free 
surface is convex. 

In parts of the groove where the cross-section of the groove is completely filled (I ) ,  
(2), (4), ( 5 )  and (6) combined to yield 

r ( e ( z ,  ?), a)  cos (a  - 0(z,  t ) )  2 a- 
t ) } -  

d i (  8(z, t ) )  
at 
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where 
h 

D* = 2 tan (a). 
lu 

Note that ai l136 > 0, and r (6 ,  a) cos (a-  8) > 0 for any physically realizable values of 
6 and a. 

3. The simplified similarity solution 
When liquid flows down the groove it is expected that there will be a region in the 

vicinity of the drop where the fluid is pinned to the walls of the groove. In this section 
it is assumed that the length of this region is small compared to the wetted length of 
the groove. This version is considerably simpler and provides a universal solution that 
applies for all values of the parameters 8, and a. In the next section this assumption 
will be relaxed. The more realistic solution shows that at each instant in time about half 
of the wetted length of the groove has fluid pinned to the sidewalls. 

Let z = 0 be the point at which the groove intersects the drop. Considering flow in 
one direction only ( 8 a )  is solved with the boundary condition 

h(0, t )  = h,. (10a) 

This is a reasonable condition provided the groove is never completely filled with liquid 
except in a small region around the drop. It is assumed that liquid begins to emerge 
from the drop perimeter at t = 0 which gives the initial condition 

h(z,O) = 0. ( l o b )  

It is also assumed that far down the groove the height of the fluid in a groove 
approaches zero, that is h(z, t )  - 0 as 2 +co. Rather than using this boundary condition 
the more stringent condition will be used that at any finite time, the total volume of 
liquid in the groove is finite: 

Equation (8a), and the conditions (lOa-c) are all invariant under the change of 
variables t --f h2t and z +. Az. This implies that it should be possible to solve this system 
of equations using the similarity transformation 

where 
" 

Substitution (1 1 b) shows that q5 must satisfy 

In Appendix B it is shown that it is not possible to solve this system of equations if the 
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function $(?) approaches zero gradually as r,~ -too. Instead, the solution must go to zero 
at a finite value r/ = yo, and stay zero. In terms of the original variables h(z, t )  and z ,  
this means h(z,  t )  = 0 for z > zo(t) = yo(Dt)li2.  Therefore, the volume flux is zero for 
2 > zo(t), and hence it must be zero as z+z , ( t )  from below. If this were no& the case 
there would be buildup of a finite amount of fluid in an infinitesimally small region of 
space. In terms of the similarity variables, the requirement that the flux approach zero 
at the interface can be written as 

This is a very important condition that needs to be imposed when solving the system 
of equations (12u-c). If d$(O)/dq is less than a certain value, the solutions go to zero 
at a finite value of 7, but only for a certain value of d$(O)/d,v will the solution go to 
zero while satisfying (1 3) .  

In Appendix B it is shown that in order to satisfy (13) it is necessary that d$(g,)/dy 
be finite, and, in fact, equal to -+yo. In order to integrate the equations away from vo 
it is helpful to know the behaviour of the solution near ‘lo. This allows integration of 
the equations starting slightly away from the point yo where the differential equation 
is singular. Once it is known that d$(yo)/dr/ is finite (12a) can be repeatedly 
differentiated giving 

Let $ ( T I , [ )  be the function obtained by integrating (12a) backwards from [ with 
starting values 

$(t%E) = 0 

and 

In order to find the solution $(y) an ordinary differential equation solver is used to 
integrate (12a). It can be shown that if $(r, 6) is a solution to (12a) then so isflv) = 

( 1//3’) $(/3r/, 6) for any value of /3. In order to find the solution, set [ = 1 and integrate 
(12a) backwards from = 1 - I%/ where ST is chosen to be a small number and use (14) 
to find the initial conditions at y = 1 -8y. By integrating these equations backwards 
$(O,l)  can be found. By setting /3 = ($(O, 1))l” it is found that $ ( r )  = (1/p2) $(& 1) 
satisfies all of the necessary conditions. It follows that ?lo = l/($(O, 1))’”. Finally, the 
parameter Sy is adjusted so that decreasing it further does not affect the results. The 
result of this procedure yields 

Figure 2 ( a )  shows a plot of the function $(y). This problem can be generalized if it is 
assumed that the groove is initially filled to a height h,  = eh,. In this case (12a, b)  are 
solved but (1 2 c) is replaced by the boundary condition 

= 1.702. 

$ ( v ) + e  as 4-co. (15) 

When e is non-zero the solutions gradually approach their asymptotic value. Figure 
2 ( h )  shows plots of the functions $(y) obtained for different values oft .  Note that when 
c is small the solutions still have continuous first derivatives, but they are approaching 
the solution for E = 0 which has a discontinuity in its derivative. 
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FIGURE 2. The shape function $( 7)  plotted versus 3 :  (a) illustrating the definition of the wetting front 
as 'lo; ( b )  for a partially filled groove. 

4. The full similarity solution 
A similarity solution is now presented that takes into account the region near the 

drop where the groove is completely filled with liquid. The assumption that the drop 
is much larger than the groove disallows a region where 8 is significantly larger than 
a. At any point where 0 > a the capillary pressure is larger than atmospheric pressure. 
If the radius of the drop is much larger than the height of the groove, then the pressure 
at such a cross-section would have to be much larger than the pressure in the drop. This 
would cause the fluid to flow back toward the drop rather than into the groove. 
Similarly, if the angle 0 were significantly smaller than a near the drop, this would 
cause a very low-pressure region that would cause fluid to rapidly flow into the groove. 
It follows that near the drop it should be expected that 8 z a. 



116 L. A .  Romero and F, G.  Yost 

A solution will now be found such that for z < z l ( t )  the groove is completely filled 
with fluid, and for z > q ( t )  the groove is only partially filled with fluid. For z < zl(t), 
h(z, t )  = ha and 8(z, t )  must satisfy 

For z > zl(t) ,  O(z, t )  = 8, and the height h(z, t )  must satisfy 

At z = z l ( t )  the pressure must be continuous which requires that 

h(z,(t), t )  = h,, and O(z,(t), t )  = O0. (18a, b) 

At the interface between the two regions the flux must also be continuous and for this 
to be true the pressure gradient must be continuous. It follows that 

As in $3 it is required that the total amount of fluid in the groove be finite for any finite 
time which requires that 

h2(z, t )  dz < co. 
J % ( t )  

If the drop is placed on the groove at t = 0 this gives the initial conditions 

z1(0) = 0, h(z,O) = 0. (21 a, b) 
As in 53 these equations are all invariant under the transformation t --f h2t and z + hz. 
This implies that these equations possess a solution of the form 

(220, b) H z ,  t )  = O(q), h(z, t )  = h, $(TI, 

q ( t )  = T1(Dt)1’2. ( 2 2 ~  d )  

As 7 -+co the same equations obtain as in the last section. The same arguments can be 
used to show that $(y) cannot approach zero gradually, but instead must become zero 
at some finite value 7, and stay zero for 7 > r0. The sidewalls of the groove will not 
be wet at all for 7 > 7,. and there will be a pinned region for 7 < 67, = rl, where 
0 < S < 1 is a constant that needs to be determined as part of the solution process. 
Depending on whether or not the groove is completely filled the equations are 

- or 

At 7 = 8~1, the conditions that require continuity of pressure and flux of liquid are 

8(8ra) = 6 0 ,  $(Sro) = 1 ( 2 4 4  b) 

d4 d8 
- = cot(a-Oa)- 
d r  dy 

(24 c) 
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At the point lo the dimensionless height $ must go to zero: 

$ ( T o )  = 0. 
As in the last section the dimensionless flux must also vanish at 9,. This implies the 
condition 

(25b)  

and the condition near the drop requires 

O(0) = a. (26) 

Solutions can be found to the system of equations ( 2 3 4  b), (234), (25a, b ) ,  and (26) 
by Newton's method along with standard ordinary differential equation solvers. By 
using the similarity property of (23 6) this problem can be reduced to determining the 
parameter 6. To do this consider the function $(s, 8 that satisfies (23b) and the 
boundary conditions in (25a, b).  The function $(a, 1) can be determined by solving 
these equations when 5 = 1 .  As in the previous section the function 

Once v0(S)  is determined, (24) can be used to determine both 8(6v0(6)) and 
(d/d?/)O(&j,(cY)). Once these are determined (23a) is integrated from '1 = 6 ~ , ( 6 )  to 
'1 = 0 to find 8(0,6). The parameter 6 must now be adjusted so that O(0,S) = a. 

In order to integrate ( 2 3 ~ 1 ,  the functions T(H,a) and (d/dO)I'(B,a) must be 
evaluated at each step of the solution to the ordinary differential equation. Every 
evaluation of r (8 ,  a )  requires the solution of Poisson's equation on the region of 
interest. This is by no means an insurmountable computing problem, but it was decided 
to simplify this part of the calculation by using the approximations in (7a )  and (7c). 
As already mentioned, these correlations predict T(0, a)  to within 2.5 % for all values 
of 8 and a such that a > 8. With this in mind (23a) is replaced by 

where 
dO 

G(v(?/), a) = cos (@(r) -a)  h ; ( o ( ~ ) ,  a) ~ 1 ' 2 ( ( e ( ~ ) ,  a) -. 
d r  

Note that in the last section the value 7, was independent of the parameters 8, and a. 
This is not the case for the solutions described in this section. However, these equations 
can be solved approximately when 19, z a to give a solution that does not depend on 
either a or 8,. This solution will now be presented. 

It is clear that when 8, z a (27) requires that d8(r)/dr be nearly constant. Equation 
(24) can be approximated by 
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FIGURE 3. The functions (a) S(O,, a)  and (b) yo(Bo, a). plotted versus (a: - @)/a 
for different values of a. 

Using the fact that d8/dq is nearly constant on the interval [O, 6qo] and in order that 
O(0) = a and 8(6qo) = Oo the following must be true: 

When this is combined with the approximate boundary condition in (28) it is found 
that 

Equation (30) along with the differential equation (23b) and the boundary conditions 
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FIGURE 4. The dimensionless height at the centreline of the groove for a = 60" 

and different values of 0,. 

(25a, b)  can be used to determine the constants S, 7, and the function 4. This system 
of equations has been solved numerically using Newton's method. It is found that 
S = 0.546 and 7, = 2.272. 

As in the last section this solution has the advantage that it is not dependent on the 
parameters 8, and a. Note that a considerable fraction of the wetted section of the 
groove has the fluid pinned to the sidewalls. This contradicts the assumption made in 
the last section, and as will be shown, is in much better agreement with the results 
obtained by using the full similarity solution. Figure 3 (a)  shows plots of the function 
6(8,, a) and figure 3 (b) shows plots of the function ~,(8, ,  a) as functions of (a- O)/a for 
different values of a. As O0+a all of the solutions approach the limiting values 
predicted by the asymptotic result that assumes a - 8, 4 1. Figure 4 shows plots of the 
dimensionless height at the centreline of the groove for a = 60" and different values of 
8,. In the pinned region this height is given by #(T)  h,(B(y), a)/h,, and in the unpinned 
region it is $(r) h,(O,, a)/h,. 

It should be pointed out that the height at the centreline of the groove does not have 
a continuous first derivative at the transition point between the pinned and unpinned 
regions, which is clearly in violation of Laplace's equation for the jump in pressure 
across an interface. It follows that near this point the assumption that the radius 
of curvature in the axial direction is small compared to the curvature normal to the axis 
is not correct. However, away from this point the assumption should be valid. 

In $6 a similarity solution will be derived for a drop travelling down an arbitrarily 
shaped groove, in particular grooves that are rounded at the top rather than sharp like 
those considered above. When the fluid fills such a groove there is always a well-defined 
contact angle such that there is no pinned region. The height at the midline would 
always have continuous derivatives. The problem considered thus far can be considered 
as the limit of a problem where the sidewalls of the groove gradually flatten out. 
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Note that figures 3 ( a )  and 3(b)  include plots for a = 0. These plots were obtained by 
numerically letting a-0. It can be shown analytically that there is in fact a well- 
behaved limit to our equations as a - 0. However, one should not conclude that this 
limit models the behaviour of a drop spreading on a flat surface. Our equations depend 
crucially on the assumption that the drop is spreading in an essentially one- 
dimensional motion down the groove. Our assumptions do not hold until the drop has 
spread far down the groove compared to both its height and width. Our equations do 
not model the spreading of the drop in a direction perpendicular to the groove. If we 
had a very small-angle groove our equations would at best model the long time 
behaviour of the drop spreading down it. 

5. The volume flux 
In this section it will be shown that under certain simplifying assumptions the 

volume flux has the form given in (6). In Appendix A details are given on how the 
constant T(0, a)  is computed numerically. Let L be the characteristic length scale along 
the axis of the groove. If it is assumed that h / L  < 1 then locally the flow in the groove 
appears to be independent of z, and the axial contribution to the mean curvature can 
be ignored. As in Poiseuille flow, it is possible to satisfy the equations of motion by 
assuming that the velocity field is independent of z and has a component in the 2- 

direction only, and that there is a constant pressure gradient in the ,--direction. In a 
cylindrical coordinate system (r ,  4 , ~ )  the velocity vector and pressure are given by 

u(r, 4, z )  = (O,O,  W, 4)L 

2 = constant. 
az 

This velocity field automatically satisfies the continuity equation for an incompressible 
fluid. In order to satisfy the momentum balance in the Navier-Stokes equations u' must 
satisfy 

where 

Here, the time rate of change of w has been ignored, which is valid provided that 

where T is the characteristic time for the change in the velocity field. From self- 
similarity L2 = DT,  where L is the characteristic length scale. From the definition of D, 
in order to ignore the time derivatives of w, the inequality ht yp/(,u2 L2) 6 1 must hold. 

The no-slip boundary condition gives 

w(r,  4) = 0 for 4 = & &t -a).  ( 3 2 4  

(32b) 

The free surface can be written as 

r(4) = h(l ,  Of(4, Bo. a), 

wherefis chosen so that the curvature of the surface is constant, and the surface meets 
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the wall with a contact angle of Oo. It is important to emphasize that the free surface 
scales according to the height h(z, t )  at the wall. If i t  is assumed that the viscosity of the 
fluid above the liquid surface is negligible, then the surface of the fluid must satisfy the 
stress-free boundary condition 

(32 4 -n.n = ( - ,+p , )n  Y on r($) = h(z,t)A$,Oo,a). 

Here, n is the stress tensor given by 

n is the normal to the surface, and p o  is the pressure above the liquid surface. It is 
assumed that there is no axial component to the normal, hence 

n = (nr, n4, 0). ( 3 2 4  

The boundary conditions at the free surface can now be written 

p = -1, R Po’ 

It is clear that if @(r,  q5) is a function that satisfies 

@(r,O) = 0 for 0 = -k(+n-a), 

then it is possible to write 

w(r, q5) = Ah2(-, t )  @ - 
(h(: t )  ’ $1 ‘ 

The volumetric flow rate can be written as 

= 1 r - m  [(G MC. 6‘0, a) 
rw(r, q5) dr dq5. 

In terms of the function @ this can be written as 

(35) 

where 

r(oo, = -2 [~-“[4’o”“’ r@(r, $) drd$. (36b) 

The function T(Oo, a) needs to be computed numerically. The details of this numerical 
calculation are given in Appendix A. 
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FIGURE 5. The function K(a, 8) plotted versus a for 0 = 0" that suggests a maximum flow rate at 
approximately a = 70". 

The correlation in (7a) was obtained in the following manner. The calculations begin 
with the expansions 

T(a, a )  z &0t3(a) -$0t5(a) as a --f in 

and T(a, a)  z &ot(a) - as a-0. 
1 

2 cot@) 

These expansions can be derived with the use of straightforward asymptotic methods. 
Both of these expansions have been verified using the numerical methods described in 
Appendix A. A rational function approximation to this solution is now sought that has 
the right asymptotic behaviour in the limiting case described above. The rational 
function 

1 cot3(a) + h cot4(~)  + cot@) 
Q A ( c 0  = - 6 1 + hcot(a) + 4 cot2(a) + h cot3(a) + cot4(a) 

has the correct behaviour as cot(a)+O and as cot(a)+co for any value of A. 
The correlation in (7a)  was obtained by sweeping through a for each value of h and 

recording the largest percentage difference between the correlation, and the numerical 
results. The value of h was then varied in order to minimize this percentage difference. 
It was found that h = 3.4 gave excellent agreement between this correlation and the 
numerical results. The error was less than 0.1 % for all values of a. 

The correlation in (7c) was obtained by assuming that T(O,,, a) was proportional to 
T(a, a)  times the area raised to a power, and h, raised to a power. These powers were 
adjusted until the relative error between the numerical results and the correlation was 
less than 2.5 YO. 

The function K(6,, a) in (8 c)  is the function that gives the effect of the geometry on 
the diffusion coefficient in (8b). Figure 5 shows a plot of this function for 6, = 0 and 
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0 < a < fn. It is interesting to note that this function is not monotonic in a. This means 
that there is a certain angle for which flow in the groove will be maximal. 

6. Arbitrarily shaped grooves 
So far the groove of interest has been V-shaped and embedded in an otherwise flat 

surface. In this section an outline will be given of a similar analysis for an arbitrarily 
shaped groove with constant cross-section. It will be shown that for such a groove a 
similarity solution still obtains and the front of the fluid will move like 

As in the last section it could be assumed that there is a sharp discontinuity in the 
sidewalls (at the point where the groove intersects the flat surface). Instead, it will be 
assumed that the sidewalls of the groove smoothly approach the flat surface. In this 
case there will be a height, h,, at which the free surface of the filled groove will be flat. 
For an arbitrarily shaped groove the cross-sectional area is not necessarily proportional 
to h2. In general 

(3 7) 
where h = h/h,. 

Area = ht&, 0), 

The radius of curvature is no longer proportional to h. In general it is given by 

1 1  
- = -k(h, 0). 
R hLl 

It cannot be assumed that the flux is proportional to h4; instead it is written 

where D = hoY/P.  
As with the V-shaped groove, it is required that as the drop is approached, the liquid 
must be flat which requires that h(0, t )  = h,. With no fluid in the groove the initial 
condition becomes A(=, 0) = 0. No matter how general the function q, k, and 2, it can 
be shown that the system of equations (37)-(40) and (6) are all invariant under the one- 
parameter group of transformations t + h2t and z + Az. This implies that the equations 
have solutions of the form 

h(z, 0 = $ ( 9 ) ,  

If the groove is wedge shaped as h 4 0, the same argument as was used for the V-shaped 
groove can be used to show that the height must go to zero at a finite value of 7. In 
this case the front of the fluid, once again, can be written as zo(t) = qo(Dt)li2. Note that 
when the sidewalls of the groove are smooth (except at the tip) there is no need to have 
a pinned region. If we take walls that are smooth and let them approach walls that have 
an abrupt edge like those in the V-shaped groove, we expect that the solutions will 
approach those of the V-shaped groove. In particular, when the sidewalls are smooth 
there is no discontinuity in the interface between the pinned and unpinned regions 
(since there is no pinned region). It should be noted that the theory gets into trouble 
if the groove is smooth as h-0. This case is similar to that of the V-shaped groove 
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where 8, < a. In this case dK/dh > 0 as h + 0. This gives an equation that behaves like 
a diffusion equation with negative diffusivity which will lead to an ill-posed 
mathematical problem. In this case it is argued that it is necessary to include the effect 
of the surface curvature in the axial direction. This will lead to a term like 

With this term, including the second derivative, (40) will involve spatial derivatives of 
fourth order. This term is always of a sign such that the equations are well posed no 
matter what the sign of dk/dh. 

If the groove does not come to a wedge as h 4 0, the drop may or may not flow into 
it. If the drop does flow into the groove there must be a region where higher-order 
spacial derivatives must be included in (37). These higher-order spacial derivatives will 
destroy the self-similarity of the equations. If the groove is nearly V-shaped as h+O, 
but is rounded near the tip, the exact self-similarity will be destroyed, but approximate 
self-similarity will remain. 

7. Stability of a filled groove 
The diffusion coefficient D in (8b) is negative when a < 8. In this section a 

thermodynamic argument will be given that shows that under this condition, the 
groove will not be filled with liquid. Note that this condition complements the work by 
Concus & Finn (1969) who showed that no finite-length equilibrium solution can exist 
in a V-shaped groove if a > 8. Let vlL,, vls, and vsz, be the surface energies between the 
liquid/vapour, liquid/solid, and solid/vapour, respectively. Here the vapour is 
assumed to be the atmosphere that fills the groove before the drop is placed on the 
groove. Assuming that the radius of the drop is much larger than the height of the 
groove, the groove must be filled so that the free surface of the liquid is almost 
completely flat. If this is true the change in the total surface energy per unit distance 
caused by flow into the groove is given by 

+ 2h, cot(a) vlt,. h0 

vsJ sin(ol) AE = 2(als - 

It is justifiable to ignore the change in surface energy of the drop provided the radius 
of the drop is much larger than the height of the groove. Now, the total surface energy 
per unit distance decreases provided 

vzs - vszl + cos(a) > 0 
g l z '  

or expressed alternatively 
cos(a) - cos(8,) < 0. 

Keeping in mind the geometrical constraint that 0 < a < fn, (41) will be true provided 
that a > 8,. It can be seen that the diffusion coefficient is positive if and only if it is 
thermodynamically favourable to fill the groove with liquid. This thermodynamic 
criterion can be used to show how imperfections in the groove affect whether or not 
it will fill up with liquid. As an example, suppose the bottom of the groove is flattened 
so that it does not come to a sharp point. In particular, suppose that the surface of the 
groove is given by 

y = tan (a)  x for eh, cot (a)  < 1x1 < h, cot (a) 
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and y = eh, for 0 < 1x1 < eh, cot (a). 

In this case the difference in total surface energy per unit distance, before and after the 
groove is filled, is given by 
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The total surface energy decreases provided 

cos(a) < ( I - €  ) cos (8,). 
1 - € cos (0,) 

The fact that 
I -e  

< 1  
1 -ecos(8,) 

shows that when e is non-zero, a must be larger than when e = 0 in order for the groove 
to be filled with liquid. 

8. Conclusions 
Equations for the capillary flow kinetics of a liquid in a V-shaped groove have been 

derived. With most assumptions regarding the scale of the groove dimensions, the 
resulting mean curvature, and an appropriate expression for mass conservation, a 
partial differential equation was developed for the shape of the liquid filling the groove. 
This equation was shown to be a nonlinear diffusion equation having a similarity 
solution which suggested that the liquid wetting front moved as (Dt)'/' where D is the 
diffusion coefficient. It was shown that for a well-posed problem the diffusion 
coefficient must be positive which implied that the basal groove angle relative to the 
horizontal must be greater than the contact angle between the liquid and the groove 
surface. This same condition for flow in a V-shaped groove was shown to obtain from 
a purely thermodynamic argument thus demonstrating self-consistency between the 
kinetic flow model and equilibrium reasoning. It was also demonstrated that many 
grooves of arbitrary shape will exhibit the same (Dt)'/2 flow kinetics since the flow 
equations for these grooves remain invariant under the similarity transform used for 
V grooves. Certain groove shapes do not lead to these simple flow kinetics and it is 
recommended that liquid surface curvature along the length of the groove be included 
in the model. 

The following is a list of our main results that can be directly compared to 
experiments : 

(i) For a V-shaped groove the position of the leading edge of the fluid can be written 
as : 

z,(t) = ?jo(8,, a )  (Dt)ll2 where D = (yh,/p)l/' K(B,, a). 

(ii) The diffusivity D will be negative unless a > 8,. If the diffusivity is negative it is 
not energetically favourable for the drop to spread down the groove. 

(iii) When a=8, is small we have yo w 2.272. When a-8, is not small the value 
of 'lo can be increased by as much as 40 %. Figure 3 (b) shows plots of the function 
,y,,(8,, a )  for different values of a. 

(iv) The free surface of the liquid spreading down the groove should be self-similar. 
In particular, if zo( t )  is the leading edge of the fluid, then the groove will be completely 
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filled for x < zl(t)  = 8(0,, a)z,(r). For a-0, small, we have So z 0.546. Figure 3(a) 
shows plots of &do, a)  for different values of a. When a-  0, is not small, 6(0,, a )  can 
be as large as 0.75. 

(v) The function K(B0, a )  gives the dependence of D on the geometry of our system. 
An approximate analytical expression for K(B,, a )  can be found by substituting into 
equations (5b), (7a-c), and (8c). It is interesting to note that K(Bo, a )  is not a monotonic 
function of the angle a. There is a maximum value of a that maximizes K(8,, a) and 
hence the spread of the drop down the groove. 

The authors would like to thank J. A. Mann and R. R. Rye for their helpful 
discussions on capillary-driven flow in grooves. This work was performed at Sandia 
National Laboratories, which is supported by the Department of Energy under 
contract number DE-AC04-94AL85000. 

Appendix A. Evaluation of the function T(0, a) 
In this Appendix details are given of the numerical computation of the function 

$(r,  $) that satisfies (34), and the computation of the function T(0, a)  in (36b). First, the 
functionflq5,0, a) that gives the shape of the free surface will be calculated. Henceforth, 
the functional dependence on the parameters I9 and a will be dropped when referring 
to the function$ Discussion will be limited to the case a > 0 since this gives a positive 
diffusion coefficient. With reference to figure 1 (b) note that the radius of curvature of 
the interface is given by 

The centre of curvature is a distance x, above the apex of the groove. From figure 2 
it can be seen that x0 = 1 +cot (a-  0) cot (a). On the free surface 

( x - x , ) ~ + Y ~  = R2, 

and if (x, y )  =f(q5) (cos ($), sin (4)) then it is found that 

f l$) = x, cos ($1 - [R2 -x i (0 ,  a)  sin2 (q5)]1/2. 

The normal to the surface is given by 

Here e, and e+ are the unit normals in cylindrical coordinates. Use is made of the fact 
that an inhomogeneous solution to (34) is 

cos (2($ - a ) )  
This yields 

where 
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The solution $h is the function that minimizes the functional 

A(w)  = 5 IVu’12dv- gnlds (A 4) 
& s,, s, 

subject to the constraint that 

w ( r , $ )  = 0 for $ =+a. (A 5 )  

In (A4) the first term is integrated over the volume of fluid, and the second is 
integrated over the free surface. An approximate solution is now found by writing $,, 
as a finite sum that automatically satisfies the boundary conditions at $ = k (fn - a)  
and that satisfies Laplace’s equation 

N 

$h(‘? $) = c $ 1 7  

k=O 

$k(r?  $) = rhk cos (hk $)? 

in + kn 
= Z‘ 

For any set of coefficients ak the functional can be written as 

where 

N I N N  
A(a)  = 3 Aij  a, aj - 3 ak bk, 

and 

The coefficients A i j  and bij are obtained with use of numerical quadrature. An 
approximation to the function $h is obtained by fixing N and minimizing A(a) .  This 
leads to a linear system of equations for the coefficients uk that can be solved 
numerically. Once the coefficients are known, it remains to determine the quantity r 
which can be written as 

rrI2-a N 

r(8, a)  = 210 l’) Y ($*(r ,  $1 -k 
k=O 

A simple calculation shows that this can also be written as 

where 

and 
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Appendix B. Certain proofs regarding the function #(y) 

In this Appendix several results are proven concerning the system of equations 
(12a-c). First it is proven that no solution to this system of equations can approach 
zero gradually as 'y+zcr. To show this (12a) is integrated from 7 to TI* to get 

Now the behaviour of (B 1) is examined as y*+oci. In order to satisfy (12c) it is 
necessary that $'(y) TI --f 0 as '4 +a. It follows that 

It is now clear that as TI +co it is necessary that $(y) = 0. If this were not the case then 
it would be necessary that 

This is not possible since this would imply that the function $( 4 )  did not approach zero 
as y +a. It is concluded that it is necessary to have the function #(TI)  go to zero at some 
point y = ?lo. Note that (B 1) also implies that $(q) must be a monotonically decreasing 
function outside the region where $(y) = 0. It will now be shown that in order to satisfy 
(13) it is necessary that d$(,y,,)/drl is finite. This follows with use of (B 1) with y*  = yo. 
In this case it is found that 

Herefly) is a function that, owing to the monotonicity of q5(y), can be shown to satisfy 

and it follows that 
f i l l )  = 4 1 )  as ' 1 " l o .  

It is clear that d$( rl)/dy must remain finite as y 4 q,,, and in fact 
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